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Abstract

This paper describes the design principles, syn-
tax, and semantics of the distributed real-time pro-
gramming language TGHC (Timed Guarded Horn
Clauses).

TGHC is a descendant of concurrent logic program-
ming languages [5, 6, 25, 28], and it is capable of
explicitly expressing timing constraints by introducing
the timed guard to GHC [28]. A formal semantics of
o subset of TGHC is given as an appendiz.

1 Introduction

1.1 Motivations

Real-time systems [15] are systems whose timing
behaviors adhere to the timing constraints imposed by
the surrounding environments. Such systems should
often be distributed since @) parallelism is demanded
to achieve the required performance, b) the nature
of the problems frequently requires components of
the systems to be physically distributed (e.g. two
robot arms pick a box up together), and ¢) redundant
components are effective in order to tolerate failures
(thus supporting the systems to meet their timing con-
straints).

Application fields of real-time systems have been
expanding, and many such systems have been designed
such as factory automation, avionics, and huge reac-
tor system control. Due to the decrease of computer
systems’ cost and to the increase of their performance,
there will be even wider applications of real-time sys-
tems in the future. The concept of HFDS (Highly
Functionally Distributed Systems) in TRON project,
as Sakamura showed in [20, 22|, illustrates this picture
of the future where virtually everything is computer-
ized.

However, it is difficult to build huge real-time sys-
tems as HFDS by using today’s technologies; the fol-
lowing is a list of some of the difficulties:

1. Such systems contain a large number of real-time
programs that cooperate — productivity has to be
improved, and concurrent programming has to be
made easy.

2. Such systems necessitate explicit handling of
time. Designers of such systems have to consider
timing behaviors of the systems throughout their
specifications, implementations, and verifications
- methodologies for this have to be established.
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3. Since such systems interact with human society,
failures of such systems can harm the society to
a considerable extent; they could even be life-
threatening - fault-tolerance and automatic veri-
fication of the systems are required.

We believe that most of these problems can be made
easier by providing appropriate programming lan-
guages.

In today’s real world, real-time systems are pro-
grammed mostly in low-level languages such as C' and
assembly languages, for reasons mainly concerning ef-
ficiency in their execution; but efficiency in program-
ming deserves much more attention. These languages
lack capabilities in expressing timing constraints and
concurrency, two most important properties of real-
time programs; these have to be taken care of by capa-
bilities of operating systems, namely scheduling poli-
cies and multi-tasking, respectively. As a result, these
properties are not made very explicit in the programs
themselves, making it troublesome to modify, verify,
and reuse real-time programs.

A number of imperative real-time programming
languages have been proposed to improve this situ-
ation; such languages include Ada [12] and real-time
concurrent versions of C' [9]. However, these languages
are hereditarily sequential (two statements in a pro-
gram are executed sequentially by default), and they
are not suitable for abstraction of problems that are
of concurrent nature. Also, these languages became
more complex by incorporating more syntactic con-
structs to introduce timing and concurrency. Farther-
more, due to side effects of assignments, behaviors of
the written programs are difficult to reason about.

We believe that real-time programming languages
in the future should rather be declarative than imper-
ative. Reasoning about declarative programs is easier
than reasoning about imperative programs, since se-
mantics of declarative languages are based on static
(mathematical) frameworks such as function, logic,
and algebra. Also, concurrent programming with
declarative languages is meant to be easier than im-
perative languages. Mathematical expressions do not
contain control informations that specify how to eval-
uate (or prove) them; some parts of them can be evalu-
ated (or proved) in an arbitrary order, and some parts
of them depend on others. By describing given prob-
lems with mathematical expressions, programmers can
naturally disclose concurrency hidden in the problems.



Moreover, these languages would provide means to
specify timing relations between events, which is easier
than specifying procedures to meet timing constraints.

The goal of this paper is to propose a new
distributed real-time programming language TGHC
{Timed Guarded Horn Clauses), a descendant of con-
current logic programming languages [5, 6, 25, 28],
which provides explicit notions of timing and concur-
rency in a simple and declarative way.

1.2 Approach and related works

Related works Real-Time Lucid (8], RLucid [18],
and LUSTRE [3] are declarative real-time languages.
These languages are based on operations over timed
streams, and are categorized as data-flow languages.
RLucid and LUSTRE are based on multiform time
point of view; any streams of external events (such as
values sent from sensors) are viewed as defining clocks,
and actions are taken at the exactly same time as the
clocks tick —a clock ticks when an event arrives (there-
fore LUSTRE is often regarded as a synchronous real-
time language). Programs based on multiform time do
not need to handle time values, and are claimed to be
more reusable, since they can work on different time
scales. These declarative real-time languages are also
intended to be used as specification languages. Halb-
wachs et al. showed in [11] a way to verify a real-time
program by using LUSTRE as both its specification
and implementation language.

Some languages have been designed in order to
construct reactive environments with existing real-
time programs; the act of constructing reactive en-
vironments is to program (or specify) interfaces of
the environments, and therefore can be called meta-
programming. Such languages include NPL [31] (based
on guarded commands) and TACL/TULS [14, 21]
(based on macro expansion). NPL introduces a no-
tion of time to guarded commands by placing timers
in their guards. TACL/TULS, as far as we could tell,
does not seem to have any notions of time. These
languages have relatively simple semantics since they
are not intended for complex programming, so that
mathematical semantics can be formulated. However,
behaviors of the meta-programs depend on the behav-
iors of the controlled real-time programs, which are
rather unpredictable.

Approach in TGHC Concurrent logic program-
ming languages are based on guarded commands, as
well as Horn clauses. TGHC introduces a notion
of time by placing time intervals after certain parts
of guards (called timed guards) become true. Since
programming in concurrent logic programming lan-
guages is conventionally based on stream operations,
this makes timed streams as used in LUSTRE avail-
able in TGHC. LUSTRE gives higher abstractions of
timed streams, while TGHC gives more control over
timed streams; whether providing more control over
timed streams is beneficial in real-time programming
or not is yet to be studied, since it makes eflicient
implementation more difficult.
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Since meta-programming ! has been studied exten-
sively in concurrent logic programming [7, 19, 26, 28],
the results may apply to TGHC. A meta-interpreter
of TGHC is shown later in Section 4.3.

1.3 Structure of this paper

The rest of this paper is organized as follows: Sec-
tion 2 gives explanation of necessary background to
understand this paper. Section 3 describes the design
principles, syntax, and semantics of TGHC. Section 4
shows some examples of TGHC programs. Finally,
section 5 gives concluding remarks. An appendix gives
a formal semantics of a subset of TGHC.

2 Background

2.1 Distributed real-time programs

Outline Distributed real-time programs are con-
current programs, whose processes are phyically dis-
tributed over networks, and are timed in relative to
either internal or external events. An example of a
process timed in relative to internal events is a peri-
odic process that samples the value of a sensor once
in a specific time interval. An example of a process
timed in relative to external events is a sporadic pro-
cess that has to take an action within a specific time
interval after a sampled value of a sensor exceeds cer-
tain range.

In most cases, it is more important to constrain re-
action time of the programs to the events in the phys-
ical world than to constrain the whole length of their
execution time; distributed real-time programs do not
necessarily terminate, in which case there is no sense
in constraining completion time of the programs (ter-
mination of flight control programs or nuclear reactor
control programs is not desirable).

The fact that distributed real-time programs inter-
act with the physical world implies that behaviors of
these programs have indeterminacy; the behaviors of
the programs cannot be decided only by looking at
the programs themselves — they depend on the order-
ing and timing of the events in the physical world (this
also applies to any concurrent programs; after all, the
physical world can be abstracted as another process).

Timed stream A timed stream is a sequence of
time-stamped values. Timed streams are useful ab-
straction to be used in continuing interactions among
processes in distributed real-time programs. A pro-
cess can take a timed stream as an input sequence of
events, take necessary actions, and generate another
timed stream as an output. In LUSTRE, a program
is a set of nodes, which define functions from streams
to streams. In TGHC, a program is a set of clauses,
which define relations among streams.

IMeta-programming in concurrent logic programming is in-
tended to add more functionality to the runtime systems, and
is not necessarily concerned with constructing reactive en-
vironments. However, it gives detailed control over multi-
ple programs, and can be applied to construction of reactive
environments.



2.2 Concurrent logic programming lan-
guages

Outline Concurrent logic programming languages,

such as Concurrent Prolog 24, 25}, PARLOG |[6], and

GHC [28], are descendant of the Relational Language

[5]%; they are based on the notion that concurrent pro-
grams are relational than functional, because of their
indeterminacy. Their syntaxes and declarative seman-
tics are almost the same; they are all based on guarded
Horn clauses, which introduces the commit operator
to Horn clauses. But their operational semantics are
rather different in their synchronization mechanisms.

In this subsection, informal syntax and semantics of
GHC(C are described, since current semantics of TGHC
is based on that of GHC (readers are referred to ap-
pendix A for formal definitions). An example of a
GHC program is also described, which is extended to
a TGHC program in section 4.1.

Preliminaries The basic elements of GHC pro-
grams are terms. A term is formed from function sym-
bols and variables. Traditionally, function symbols are
symbols beginning with small letters, and variables are
those beginning with capital letters. A variable alone
is a term. Otherwise, a term is of the following form:

f(71,72$-""7‘n) (nZ 0)

where f is a function symbol, and 4’s are terms. For
example, X, a, cons(a,X), cons(a,cons(b, X)) are
terms.

An atom(ic formula) is of the following form:

p(71572,'--’7n) (n > 0)

where p is a predicate symbol, and +’s are terms. Tra-
ditionally, predicate symbols are symbols beginning
with small letters. For example, is.list(cons(a, X)) is
an atom.

Syntax of GHC A GHC program is a set of
guarded Horn clauses of the following form:

H« Gy,...,Gm | By,..., Bn. (myn 2 0)

where H, G’s, and B’s are atoms. H is called the
head, and G’s and B’s are called guard goals and body
goals, respectively. A goal may be a unification goal
of the following form:

T =7
where ; and 7, are terms, or a non-unification goal
that is an atom. “|” is the commit operator. H and

G’s together are called the guard, and B’s as a group
are often called the body. If there are no goals in the
guard or body, it is traditionally denoted by true.
A program is invoked by a goal clause of the follow-
ing form:
4—B1,...,Bn. (nZ 0)

where B’s are goals.

2Papers referenced here are all found in the collected papers
edited by Shapiro [27].

Declarative semantics of GHC A guarded Horn
clause is read as follows:

If every goal in its guard and body is true, its
head is true.

Results of every successful® execution of GHC pro-
rams conform the above reading of applied guarded
orn clauses; this is called soundness. There may be

some clauses that are not applied in an execution, so
that the results might not be the only solution; this is
called incompleteness. Incompleteness reflects the fact
that there is indeterminacy in concurrent programs.

Operational semantics of GHC Intuitively, each
guarded Horn clause is considered as a rewrite rule
of a goal, where its guard specifies the conditions to
be satisfied for the rule to be applied, and its body
specifies the actual goals to replace with. If more than
one clause can be applied, one of them is selected non-
deterministically. The act of applying a clause is called
commitment. Commitment is an irreversible act.

Assignment of variables is usually called binding.
Bindings are produced after commitments, and any
attempts to bind the bound variables with incompat-
ible terms fail.

Two terms are unified when they become lexically
identical by binding the variables in each with the cor-
responding terms of the other, and replacing the vari-
ables with the terms.

A goal is instantiated when any variables appearing
in its arguments are bound.

An informal operational semantics of GHC is given
as follows:

1. Goal execution: Every goal in the goal clause is
executed concurrently; a goal is executed by the
following steps:

(a) Head unification: Variables appearing in the
head of a clause is analogous with formal
parameters of procedural or functional pro-
gramming languages. Clauses whose heads
are unifiable with the calling goal become
the candidates for commitment; variables
appearing in their heads are bound with the
corresponding terms in the calling goal, and
replaced by them.

Suspension rule: Guard goals of the can-
didates are executed concurrently, with a
restriction imposed by the suspension rule:
any attempts to instantiate the calling goal
are suspended.

(c) Commitment: The execution of the calling
goal commits to a clause whose guard suc-
ceeds; the body of the committed clause re-
places the calling goal. Unification goals in
the body may instantiate the calling goal.

3Maher investigates in [16] the conditions when a failed ex-
ecution is sound — meaning there is no solution to the given
goals.



2. Success: A unification goal succeeds if its argu-
ments are unified; a non-unification goal succeeds
if it is eventually replaced by unification goals
that succeed, or by an empty body. A guard suc-
ceeds if every guard goal succeeds. A program
succeeds if every goal in its goal clause succeeds.

3. Failure: A unification goal fails if their arguments
are not unifiable; a non-unification goal fails if its
execution has no candidates for commitment, or
the guard of every candidate fails. A guard fails
if any of its guard goals fail. A program fails if
any goals in its goal clause fail.

Process interpretation of GHC programs A
GHC program defines a concurrent program in the
following way:

1. Recursively defined predicates define processes.

2. Conjunction of processes define a network of pro-
cesses.

3. Arguments of the goals define local states of pro-
cesses.

4. Shared variables among goals define communica-
tion channels.

An example of a GHC program is described below.

Example: A railway control problem The fol-
lowing problem is taken from [11]:

Figure 1 shows a railroad with two embedded
sensors, Sensorl and Sensor2, which return
true whenever there are wheels on them, and
return false if not. The problem is to detect
the traversal of each axle from one district
to the other. There can be only one axle in
Z zone at a time, but an axle may turn back
within Z zone, and even oscillate on or about
Z zone.

The above problem can be solved by defining three
processes: two sampling processes to sample the val-
ues of Sensorl and Sensor2, and a detecting process
to monitor rising and falling of sampled values to de-
tect the traversal of each axle. It often helps to draw
state transition diagrams before writing a GHC pro-
gram. Figure 2 shows state transition diagrams of this
problem, which is read as follows:

A sampling process (a) has only one state; it keeps
sampling the value of the sensor to which the process
is assigned. The detecting process (b) has three states:
STO (initial state), ST1 %after an axle entered Z zone
from the left district), and ST2 (after an axle entered
Z zone from the right district). While the process is
in STO,

1. An axle enters Z zone from left when Sensorl
rises while Sensor2 is false.

2. An axle enters Z zone from right when Sensor2
rises while Sensorl is false.
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While the process is in ST1 (ST?2),

1. An axle traverses from left to right (right to
left) when Sensor2 (Sensorl) falls while Sensorl
(Sensor?) is false.

2. An axle turns back when Sensorl (Sensor2) falls
while Sensor2 (Sensorl) is false.

Otherwise the process stays in the same state.

Figure 3 shows a GHC program translated from the
state transition diagrams.

There are some conventions about GHC program
text: A text following % is a comment. %alb ,
la,b|c], and i ] are syntactic sugar for cons(a,b
cons(a, cons(b,c)), and nil, respectively (although |
does not appear in the example). An anonymous vari-
able, denoted by _, is used when any terms may be
bound to the variable.

:= is a built-in binary predicate that unifies the left
argument with the evaluation of the right argument.
otherwise is a built-in predicate that can only appear
in guards; it succeeds when the guard of every other
candidate clause fails.

In Figure 3, we introduced two built-in functions
sensel() and sense2(), which have the values of
Sensorl and Sensor2, respectively, when evaluated.

In GHC, a stream is represented by a list. Process
sensorl and sensor2 in Figure 3 are typical produc-
ers of streams; their arguments are output streams cre-
ated by the processes — the unification goal § = [X|5’]
adds an element to the stream.

Process detector in Figure 3 is a typical consumer
of streams; its first argument is its state, second argu-
ment is the input stream from process sensorl, third
argument is the input stream from process sensor2,
and the fourth argument is the output stream. A term
IToR is added to the output stream when an axle tra-
verses from left to right, and rToL is added when an
axle traverses from right to left.

In this solution, there must be no axles on either
Sensorl or Sensor2 when the program starts.

As readers may have noticed, this program prob-
ably won’t work. Since the operational semantics of
GHC does not specify the relative speed among pro-
cesses, one of the sampling processes may run faster
than the other; this means that the decision of the
detecting process is based on values of Sensorl and
Sensor2 that are sampled at two different points of
time. In this case the detection is not at all reliable.
Even if the two sampling processes sampled the val-
ues at exactly the same rate, the values are of no use
if these are not sampled frequently enough in relative
to the speed of axles. Furthermore, even if the two
sampling processes sampled the values at exactly the
same rate and frequently enough, detection does not
mean a thing if the detecting process monitored sam-
pled values infrequently, say, once in two hours.

The above problems are solved by a TGHC version
of the program described in section 4.1.



Axles

Sensorl

Sensor2

left district ———w¢—— Z zone —»r<*— right district

Figure 1: A railway control problem

Sensorl:false,Sensor2:fall
/ detect from left to right
Sensorl:fall,Sensor2:false
/ detect turning back

True / Sample current value Otherwise

Sensorl:rise,Sensor2:false /
detect entered from left

Sensorl:false,Sensor2:rise /

detect entered from right
Sensorl:fall,Sensor2:false Otherwise

/ detect from right to left
Sensorl1:false,Sensor2:fall
/ detect turning back

a) A sampling process b) The detecting process

Figure 2: State transition diagrams of the railway control problem
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% Process sensorl samples the value of Sensorl.

sensorl(S) — true | X := sensel(),S = [X|S'], sensor1(S").

% Process sensor2 samples the value of Sensor2.

sensor2(S) — true | X = sense2(), S = [X|S'], sensor2(S").

% Process detector detects the traversal of each axle.
% STO state

detector(st0, [false, true|S1], [false, false|S2], D) « true | detector(stl, [true|S1], {false|S2], D).
detector(st0, [false, false|S1],{false, true|S2], D) «— true | detector(st2, (false|51], [true|$2], D).

% ST1 state

detector(stl, [false, false|S1], [true, false|S2], D) « true | D = IToR| D'},

detector(st0, [false|S1], [false|S2], D).

detector(stl, [true, false|S1},{false, false|52], D) « true | detector(st0, [false|S1], [false}S2], D).

% ST2 state

detector(st2, [true, false|S1), [false, false|S2],D) — true | D = [rToL|D'},

detector(st0, [false|S1], [false|S2], D).

detector(st2, [false, false|S1], [true, false|S2], D) — true | detector(st0, [false|S1], [false|52], D).

% When state does not change

detector(ST, [, V1|S1),[., V2|52], D) — otherwise | detector(ST, [V1l51],[V2|S2], D).

% Goal clause

— sensorl(81), sensor2(S2), detector(st0, [false|S1], [false| 52}, D).

Figure 3: An example of a GHC program

3 Timed Guarded Horn Clauses

3.1 Design principles

Separation of concurrency and parallelism In
GHC/KL1 approach [4, 30], GHC is only concerned
with concurrency, and KL1I, a practical version of
GHC, is responsible for parallelism®. This benefits the
development of concurrent programs in the following
way:

1. In specification stage, a specification can be writ-
ten as an executable GHC program.

2. In implementation stage, the executable GHC
program can be restricted to an equivalent KL1
program to fit the physical setting.

3. A way to verify the implementation is to prove
that the GHC program can be transformed to the
KL1 program by using appropriate transforma-
tion rules.

TGHC should follow this approach; there will be the
abstract version and the practical version of TGHC.
This paper only describes the abstract version.

Separation of timing specification and meeting
the specification In GHC/KLI approach, how-
ever, timing behaviors of programs are considered as
a part of parallelism; this is not always helpful, since

4How concurrent programs are executed. For example, phys-
ical distribution of processes is a part of parallelism.
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many real problems naturally involve timing (e.g. the
railway control problem we saw in section 2.22, and
GHC programs cannot be the specifications of their
solutions. In TGHC, Timing should be specified by
programs written in the abstract version; how to meet
the specification should be worried by the practical
version. In this way, the methods of implementing and
verifying programs described in the paragraph before
can also be applied to real-time programs.

The following subsections give informal syntax and
semantics of TGHC f(1rea,ders are referred to ap-
pendix A for formal definitions).

3.2 Syntax

A TGHC program is a set of timed guarded Horn
clauses; a timed guarded Horn clause divides the
guard goals of a guarded Horn clause into two groups
as follows:

Hi—Gl,...,Gm o th,...,thc [I,u]

| By,...,Bn. (m,n,k > 0)

where G,’s as a group are called the timed guard. [
and u are non-negative integers including oo, and it
denotes a time interval; ! is the lower bound of the
time interval, and u is the upper bound of the time
interval. The time interval [0, c0] can be omitted.
3.3 Declarative semantics

The declarative semantics of a timed guarded Horn

clause is the same as that of its equivalent guarded
Horn clause obtained by ignoring “:” and [I,u}.



The intended timing behavior of a timed guarded
Horn clause is that every successful execution of
TGHC programs guarantees that no clauses are com-
mitted either before the lower bound of their time in-
tervals or after the upper bound of their time intervals,
measured from the time point when its timed guard
succeeds. In other words, a timed guarded Horn clause
is read as follows:

If every goal in its guard and body is true, its
head is true, but the clause is only appli-
cable within its time interval after every
goal in ils timed guard becomes true.

The mapping between the time unit used in the
time intervals and the physical time may depend on
each program. TGHC assumes a global time within a
program.

3.4 Operational semantics

The operational semantics of a TGHC program is
the same as that of its equivalent GHC program except
the following:

Timed commitment The unification goals in the
body of a clause either succeed or fail at the time of
the commitment (otherwise they must be suspended
due to the suspension rule; this would only happen
if the clause is called by a goal in the guard of some
clause).

An execution can commit to a clause whose both
untimed and timed guard succeed; but when the ex-
ecution can commit is constrained by the time when
the timed guard succeeds.

An execution must commit to a clause that has the
lower bound ! and the upper bound u of the time in-
terval at time ¢ such that t; +{ < ¢ < t5 + u, where
tg is the time when the timed guard of the clause suc-
ceeds. A timed guard succeeds when every goal in it
succeeds. The time when a goal succeeds is defined as
follows:

1. A unification goal succeeds at the time of the lat-
est binding that is necessary to make the argu-
ments of the goal unifiable without suspension.

2. Other goals succeed at the time when every goal
in their committed clauses succeed.

If the timed guard of a clause is empty (or a tautol-
0gy), the time interval denotes the interval measured
from the beginning of the execution of the program.

Timed evaluation of functions A physical value
(such as temparature, pressure, etc.) is represented
by an evaluation of a function. If the body of a clause
contains evaluations of functions (such as ones used by
a built-in predicate :=), the functions are evaluated at
the time of the commitment.
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% Predicate bound succeeds when a value is sampled.
bound(X) — true :: X = true [0,0] | true.
bound(X) «— true:: X = false [0,0] | true.

Figure 6: Predicate bound for the railway control pro-
gram

% Process detector now detects time out, and raises
% timing exception after 5 time units the previous
% values of sensors are sampled.
detector (ST, [V1]51],[V2]|52], D) « true =:
bound(V1),bound(V2) [5,5] |
D = [exc(ttming)|D’],
detector (ST, S1,52,D’).

Figure 7: Timing exception for process detector in the
railway control program

4 Example Programs

4.1 Example A: Railway control program

Now let us review what was wrong with the GHC
program in Figure 3. Apparently, the program ig-
nored timing constraints that are implied in the solu-
tion. First, we make the timing constraints explicit by
drawing timed state transition diagrams.

Figure 4 shows timed state transition diagrams of
the railway control program. In the figure, [{,u] de-
notes the time interval of a transition. The diagrams
are based on the assumption that the appropriate in-
terval for sampling values of sensors is defined by one
time unit, and the maximum delay of detection is three
times longer than the interval. Note that the state
transition of a sampling process is timed in relative to
its internal event, namely sampling the previous value.

Now it is a straightforward translation from the di-
agrams to a TGHC program. Figure 5 is an example
of such a program; it is also an extension of the GHC
program in Figure 3.

In Figure 5, process sensorl and sensor2 are ex-
tended to accomplish periodic execution. They receive
the previous values they sampled as a part of their
arguments. A built-in predicate bound becomes true
when its argument is a non-variable term, and the cur-
rent values have to be sampled exactly one time unit
after the previous values are sampled.

In Figure 5, process detector is extended to meet
its deadline. It checks the current values of the sen-
sors in the timed guards of its clauses, making its state
transition occur within three time units after these val-
ues are sampled; as a result, the traversal is detected
within the time limit.

Predicate bound in Figure 5 can also be imple-
mented by a TGHC program as shown in Figure 6.

It is natural to ask what would happen if the tim-
ing specification is not met. According to the opera-
tional semantics of TGHC, the execution of the pro-
gram fails. However, it is not always desirable. We



Otherwise

Sensorl:false,Sensor2:fall [0,3]

/ detect from left to right
Sensor1:fall,Sensor2:false [0,3]
/ detect turning back

Previous value is sampled [1,1)/ Otherwise

Sample current value [0.3]
Sensorl:rise,Sensor2:false [0,3]/
detect entered from left
Sensor1:false,Sensor2:rise [0,3)/
detect entered from right

Sensorl:fall,Sensor2:false [0,3] Otherwise
/ detect from right to left

Sensorl:false,Sensor2:fall {0,3]
/ detect turning back

a) A sampling process b) The detecting process

Figure 4: Timed state transition diagrams of the railway control program

% Process sensorl samples the value of Sensorl once per 1 time unit.
sensorl([P|S]) « true :: bound(P) [1,1] | X := sensel(),5 = [X|8’], sensorl(S).

% Process sensor? samples the value of Sensor2 once per 1 time unit.
sensor2([P|S]) — true :: bound(P) [1,1] | X := sense2(), S = [X]8'], sensor2(S).

% Process detector detects the traversal of each axle within 3 time units.

% STO state

detector(st0, [false, V1|S1], [false,V2|52], D) « true : V1 =true, V2 = false [0,3] |
detector(st1,[V|S1},[V{52], D).

detector(st0, [false, V1|S1],[false, V2|52], D) « true = V1 = false, V2 = true [0,3] |
detector(st2,[V1|51},[V2|S52], D).

% STI state

detector(stl, [false, V1|51}, [true, V2|§2], D) « true = V1 = false,V2 = false 10,3] |
D = [iToR|D'), detector(st0, [V1|51},{V2|52], D').

detector(stl, [true, V1|51], [false, V2|$2], D) « true = V1= false, V2 = false [0,3] |
detector(st0, [V1]|S1],[V2|52], D).

% ST2 state

detector(st2, [true, V1|81], [false, V2|52], D) — true :: V1= false,V2 = false [0,3) |
D = [rToL|D'],detector(st0,[V1]51],{V2|52], D').

detector(st2, [false, V1|S1], [true, V2|52], D) « true =: V1= false,V2 = false [0,3] |
detector(st0,[V1|51],[V2]|52], D).

% When the state does not change

detector(ST, [, V1|S1),[-, V2|52, D) « otherwise :: bound(V'1),bound(V2) [0,3} |
detector(ST,[V1|§1],{V2|S2], D).

% Goal clause
— sensorl(S1), sensor2(S2), detector(st0, S1, 52, D), S1 = [false|51'], §2 = [false|S2].

Figure 5: Example A: railway control program



% Process merge merges two timed streams

% in the order of appearance.

merge([A|X],Y, Z) — true :: bound(A)[0,0]
| Z = [A]|Z'], merge(X,Y, Z").

merge(X,[A|Y], Z) « true :: bound(A)[0,0]
| Z = [A|Z'], merge(X,Y, Z').

Figure 8: Example B: Binary merge of timed streams

should expect ourselves to be strongly encouraged to
make our railway control progam non-stop for the ben-
efit of passengers.

As an example of dealing with timing errors, now
we make process detector to detect its time out as well,
by adding a clause shown in Figure 7 to the program;
after five time units the previous values of sensors are
sampled, process detector raises timing exception by
adding a term exzc(timing) to its output stream.

Note that three kinds of timing constraints, peri-
odic execution, deadline, and time out, are all accom-
plished by a single concept of timed commitment in
TGHC.

A different solution of the railway control problem
written in LUSTRE is found in [11]. Readers may
want to compare the two solutions.

4.2 Example B: Binary merge of timed
streams

The railway control program described in sec-
tion 4.1 is itself a high-level sensor that senses the
traversal of each axle. The whole railway control sys-
tem would consist of many such high-level sensors,
high-level control programs, and high-level actuators.
The high-level control programs would be simplified if
we could merge the output streams of high-level sen-
sors in the order of occurrence of events, and construct
a single input stream for the control program.

Figure 8 shows a process that merges two streams
in the order of occurrence of bindings. The first and
the second arguments of the process is the two input
streams, and the third argument is the output stream.
An element of the input streams is added to the output
stream as soon as it is bound, preserving the order of
bindings.

This program is also a straightforward extension of
binary merge program in GHC, found for example in
28).

4.3 Example C: Meta-interpreter

We saw in section 4.1 that we can make process
detector to detect time out and to raise timing excep-
tion by adding a clause. However, adding this func-
tionality to each process in the whole railway control
system may result in loss of productivity and reliabil-
ity, since in this way every consumer of streams have
to deal with the timing exception of the producers,
forcing programmers to write more code, and making
processes less applicable to other systems.

We may want to deal with timing exceptions in
meta-level, by extending the runtime system of TGHC
to detect and handle timing exceptions. A way
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% Process call evaluates goals.
call(true, Where) — true :: true [0,0] | true.
call((A, B), Where) « true :: true

| call(A, W here), call(B, W here).
call(X,guard) «— X = (A= B) =

A= B[0,0] | true.
call(X, body) « true : X = (A= B) [0,0]

A=B

call(A,Where) — A\=true, A \= (,.),
A\= (=) true |
clauses(A, Clauses),
resolve(A, Clauses, Body),
call(Body, body).

% Process resolve tries the candidates.
resolve(A,[C|Cs), B)

meltnew(C, (A — G:: Gt [L,U] | B)),

call(G, guard) :: call(Gt, guard) [L,U| | B = B'.
resolve(A, [C|Cs|, B) « true ::

resolve(A,Cs,B') [0,0] | B= B'.

Figure 9: Example C: Meta-interpreter

to do this is to write an interpreter of TGHC in
TGHC itself; this kind of interpreters are called meta-
interpreters.

Figure 9 shows an experimental meta-interpreter of
TGHC, obtained by extending the meta-interpreter of
GHC in [28]). This interpreter does not have extra
functionality, and such interpreters are often called
vanilla meta-interpreters.

An execution of a program through this meta-
interpreter is invoked by a goal clause such as follows:

— call((p1(X),p2(X,Y),p3(Y)), body).

Process call in Figure 9 executes goals, and process
resolve accomplish commitments.

Calling goals from the guard and from the body are
distinguished by the second parameter of process call;
this is essential in dealing with unification goals. Call-
ing unification goals in the guard must succeed when
the unification goals succeed, whereas calling unifica-
tion goals in the body must try to unify the arguments
of the goal as soon as the clause is committed.

A built-in predicate clauses outputs a stream as its
second argument, which contains clauses whose head
is unifiable with the first argument. A built-in predi-
cate melt_new does the head unification, and build a
new executable clause with new local variables (oth-
erwise every local variable in the clause may not be
bound in the guard according to the suspension rule,
as explained in [28]).

By extending this meta-interpreter, we can imple-
ment detection and handling of timing error in pro-
grams in a uniform manner.

The problem with this meta-interpreter is that it
cannot reflect on failure; the meta-interpreter will fail
if the program that is executed through the meta-
interpreter fails. This is undesirable, since it means



that failure in one part of a system is inevitably prop-
agated to the whole system. We may have to enhance
the semantics of TGHC to solve this problem, namely
introducing tell guard[13, 23] that enables reflection
on failure.

5 Conclusion

5.1 Summary

A new distributed real-time programming language
TGHC is proposed. TGHC is a decendant of concur-
rent logic programming languages, and its programs
specify relations among timed streams. TGHC in-
troduces notions of the timed guard and timed com-
mitment to its direct ancestor, GHC. Three typical
timing constraints, periodic execution, deadline, and
time out, are all accomplished by the single concept
of timed commitment. Some examples of TGHC pro-
grams are described.

TGHC is designed based on our belief that dis-
tributed real-time programming languages of the fu-
ture should be declarative rather than imperative, in
order to make writing and reasoning about both con-
current and timed programs easier. LUSTRE is an
example of declarative real-time programming lan-
guages, yet it is based on functions, and thus can-
not express indeterminacy in concurrent programs.
TGHC is based on relations, and is able to express
indeterminacy.

However, our research on TGHC has just begun,
and there remains a lot to be studied. The following
subsection discusses future works.

5.2 Future works
Predictable implementation The main concern
in implementations of TGHC is the predictability of
timing behaviors. The language features that make
the programs’ timing behaviors unpredictable should
be restricted so that they can only be used in a way
such that the timing behaviors remain predictable.
Handling unbounded recursive data structures
within the guard of a clause should be restricted in
some way, since it makes the execution time of pro-
grams unpredictable. A type system will be useful to
allow implementations to represent a term internally
in a way such that it can be accessed in a bound time.
It also decreases programmers’ mistakes.

Desirable operating system capabilities The
other issue concerning implementation is capabilities
of operating systems. Difficulties in implementing
TGHC runtime systems should sometimes be over-
come by enhancing capabilities of operating systems.
We should clarify the class of such capabilities through
implementing TGHC runtime systems. The following
is a list of examples of such capabilities:

1. Time-based scheduling — each processin a TGHC
program has its time interval; it is desirable for
each process to be scheduled according to its pe-
riod or deadline.

2. Group communication — processes in a TGHC
program communicate each other via timed
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streams; a timed stream is always written by one
process, and sometimes read by more than one
process. This is naturally implemented by broad-
cast. It is desirable that operating system inter-
faces provide broadcast as one of their communi-
cation primitives.

Verification method Verification is extremely im-
portant for distributed real-time programs. Because
of the indeterminacy, testing of such programs require
generation of every possible behavior of the implemen-
tation; this often is infeasible, therefore testing may be
imperfect. We need proofs that such programs do not
exhibit wrong behaviors.

There are two major ways of verification: One is
to specify the specification as formulas in real-time
logics [1], and to prove that these formulas are valid
on the model that represents the implementation (this
method is explained in [2, 17]). The other is to write
the specification and the implementation in the same
programming language, and to prove that these two
programs are equivalent by certain criteria (e.g. by
transforming one program to another).

TGHC should be able to support whichever method
is convenient for system designers. For the latter
method, applicability of GHC program transformation
rules [29] to TGHC programs should be studied.
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Appendix
A Formal Semantics of a subset of
TGHC

This appendix defines a formal semantics of a sub-
set of TGHC named Flat TGHC. The semantics uses
timed transition system as its model.

A.1 Timed Transition System for Flat
TGHC

Timed Transition System [10] is a model for speci-
fying real-time systems; a timed transition system is a
labeled transition system whose labels include time in-
tervals for transitions. In this subsection, Timed Tran-
sition System for Flat TGHC, a variant tuned for the
purpose of formulating the semantics of Flat TGHC,
is described.

Transition System for Flat GHC, the untimed ver-
sion of the transition system, is described first; then
time is incorporated with the model.

Symbols We fix the infinite set F of function sym-
bols, P of predicate symbols, and V of variable sym-
bols.

Term Let I' be the infinite set of terms such that:

1. vcrT.



2. For every f € F, where f is a n-ary function
symbol (n > 0), f(m,...,¥) € T iff for every
1<i<n, el

A congruence relation s C I'? is a relation that
satisfies the following conditions:

1. s is an equivalence relation (i.e. s is reflexive,
symmetric, and transitive).

2. For every f(m,---sTu)s F(Vs---»7h) €T (n >
0), f(M>---»7%) € s(f(m,---,7n)) iff for every
1<i<n, v € s(v).

Atom Let A be the infinite set of atoms such that
for every p € P, where p is a n-ary predicate symbol
(n > 0), p(71,...,7n) € A for every 1 <1 < n,
7 eT

Transition system for Flat GHC A transition
system ¥ is a tuple < §,0, B, A, —>, such that:

1. S is a partially ordered set of congruence relation
s C T'?, such that for every s,s' € S, s < &' iff for
every y € T, s(v) C s'(7)-

For every 7,7 € T, v and ' are not congruent in
s € § iff the following conditions hold:

(a) There are some f(...) € s(y) and f'(...) €
s(7') such that f # f', or

(b) There are some f(71,...,7n) € s(q) and

f(Ms-o0s7h) € s(7') (n > 1) such that
v and 7} are not congruent in s for some
1<i<n

For every variable z € V, = is bound in s € S iff
for some f € F, f(11,...,7) € s(z) (n > 0),
where v; is a term for every 1 < i < n.

2. © C S is a set of initial congruence relations.

3. B is a set of multisets of atoms. For every b € B,
if a € b, then a € A.

4. A C B is a set of initial multisets of atoms.

5. Let G be the set of guards such that for ev-
ery g € G, g is a monotone function ¢ : § —
{true, false, L}, where L < true, L < false.
g € G is monotone iff for every 5,5’ € S, s < s' =
9(s) =% g(s').

Let true € G such that for every s € S, true(s) =
true.

6. —C S x Bx G xS8 x B is a transition relation.
A transition (s,b,g9,s',b') €— is also denoted
(s,b) 2 (s',0'). Every transition (s,b) 2 (s, b')
satisfies the following two conditions: s < s, and
forsomea € A, a € bAY =b~ {a} + 6, where §
is a multiset of atoms; the relation s’ — s is called
a constraint, and ¢ is called a definition of a. For
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every s € § and every b € B, there is an idle
transition 77 = (s,b) "2° (s, b).

A transition }fs, b) & (s',b') is said to be enabled
on a state s iff g(s) = true. The idle transition is
enabled on every s.

Process For a transition system
¥ =< §,0,B,A,—>, a process is an atom a € A
that is defined by the definition of ¢ in a transition

(s,b) EN (s, ).

Computation For a transition system ¥

8,0,B,A,—>, an infinite sequence (s,p)
(s0,b0), (51,b1), ..., where for every i > 0, s; € S and
b; € B, is said to be a computation of ¥ iff the follow-
ing conditions hold:

=<

1. s € O.

2. by € A.

3. For every i > 0, (si,b; EA (Si+1,6i+1) for some
g € G such that g(s;) = true, in which case

(8i,6:) 2 (8i41,bi41) is said to be taken at po-

sition 3.

For the computation (3, p), if for some i and every
. . tr
721, (s5,b5) e (8j4+1,bj+1) = 71, then

1. (s,b) is said to succeed iff b; = 0, else

2. (s,b) is said to fail iff for every (s;, b;) & (s, b!}) 3
1, 9(s:) = false, else

3. (s,b) is said to deadlock.

The notion of time is integrated with the transi-
tion systems in a similar way as in Timed Transi-
tion System [10]; a global fictitious clock is assumed,
and transitions are assumed to be taken “instanta-
neously,” while timing constraints restrict when trans-
actions may take place.

Timed state sequence Let R be the set of non-
negative reals. Time is expressed as an infinite
monotonic sequence over R. A timed state se-

uence is defined as p = (s, b,T), where (s,8) =
?so,bo), (81,01), ..., (84,0i),... (¢ > 0) is an infinite se-
quence of state-processes pairs, and T is a sequence of
the corresponding time values T; € R, such that ei-
ther Tiyy = T; or Tiyq > Ti A(8i41,big1) = (54,0;) (in
other words, progress of time is interleaved with the
change of states), and for every t € R, there is some ¢
such that ¢t < T;.



Timed transition system for Flat TGHC A
timed transition system ¥7 is a tuple < §,0,B,A,—
,I,4 >, with the underlying transition system ¥ =<
8,0,B,A,—>, lower bounds for transitions | :(——
./\f, and upper bounds for transitions u :—— NU{o0},
where N is the set of non-negative integers; for every
T = (s,b) L (s',b'), () < u(r), and {(77) = 0 and
u(71) = 00.

Timed computation For a timed transition sys-
tem ¥7 =< §,0,B,A,—,l,u >, a timed state se-
quence p = (38, b,T) is said to be a computation of
¥T iff the sequence (?, b) is a computation of the un-

derlying transition system ¥, and the following condi-
tions hold:

1. For every 7 = (8i,0;) 2 (sit1,bi41) (i > 0) and
every j < ¢ such that Tjyq, — l(-rs < T3, 9(s;) =
true.

2. For every 7 = (s;,b;) & (si,0)) (1 > 0),if 7

is taken or disabled at position ¢, then for every
j <isuch that T; +u(r) < T3, g(s;) = L.

Intuitively, once a transition is enabled, it must be
taken between the lower bounds and the upper bounds
of the time measured from when the guards become
true, or it must be disabled. Time intervals are de-
noted [{,u] henceforth (e.g. for a transition 7 with a
time interval I(7) = 0 and u{7) = oo, the time interval
is denoted [0, co]).

A.2 Flat GHC

Flat GHC is a subset of GHC, which can be im-
plemented efficiently; it is known that Flat GHC is
sufficient for most applications. A simple operational
semantics of Flat GHC programs is formulated by us-
ing the transition system for Flat GHC. For other for-
mulations, readers are refered to [16, 29).

Flatness A guarded Horn clause is said to be flat iff
whose guard goals contain only the following:

1. Unification goals.

2. Goals such that bodies of whose candidate clauses
are all empty.

A Flat GHC program contains flat guarded Horn
clauses only.

Flat Guarded Horn clause A Flat GHC program
is a set of flat guarded Horn clauses, defined as follows:

H‘_GN’GT | BNsBU

where H is an atom, and Gn,Gr,By, and By are
multisets of atoms. H is the head. If H contains
a predicate symbol p, the clause is said to define p.
A predefined binary predicate to show an congruence
relation over terms “=" is assumed. A goal with “="
is called a unification goal. Gy is a set of unification
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guard goals, and Gr is a set of unification guard goals
that will be treated as the timed guard in the next
subsection. By is a multiset of non-unification body
goals, and By is a set of unification body goals.

In the above definition, H is assumed to be an atom
of the following form:

p(zla"',wn) (n > O)

where z; denotes a variable for every 1 < i < n; this
does not restrict the use of the language since

p(’)’l"-- 7711)

where 7; denotes a term for every 1 < 4 < n, can be

rewritten as
(21,0 Bn) — TI = Y15y T = T

without changing its meaning. Also, the following

clauses

I U R

p(...) « q(z1,. ..

Q(Y1s-- 1 Yn) — Y1 = V1se -1 Yn = Tn | true. (n > 0)

where z;,y; denote a variable and +; denotes a term
for every 1 < i < n, can be rewritten as
pl..)=T1=7, . T =T | e

so that non-unification goals in the guard can be re-
placed by unification goals; this simplifies the formu-
lation of the semantics.

A program is invoked by a goal clause, defined as
follows:

— Bn,By

where By is a multiset of non-unification goals, and
By is a multiset of unification goals.

Flat GHC program A Flat GHC program C (i.e.
a set of flat guarded Horn clauses) is associated with
a transition system ¥gpe =< §,0,B,A,—>, such
that:

1. For every goal clause — By, By for C, there is one
s € © such that (v,7') € s for every vy = ' € By.

2. For every goal clause — By, By for C, By € A.

Transition For a Flat GHC program C and the as-
sociated transition system Ygpo =< §,0,B,A,—>,
A guarded Horn clause ¢ = H — Gy,Gr | By, By €
C, defining an n-ary predicate p, yields a transition

(s,b) £ (s',b') for each appropriate a such that:

1. process a defined in the transition is an atom of
the form p(71,...,7a).

2. There is a substitution clause H® «—G%,G%

| B%, B for ¢, obtained by the following sub-
stitution of variables in c:



(a) Variables appearing in H - replace them
with the corresponding terms in a.

{b) Variables appearing in every y =9 € Gy U
G - replace them with the corresponding
terms in some s(vy') if the variable appears in
v, and replace them with the corresponding
terms in some s(7y) if the variable appears in
4'; if corresponding terms do not exist, there
is no substitution clause.

(c) Other variables are replaced by variables un-
bound in s that never appeared in the argu-
ments of atoms in the computation.

3. For every vy =+ € G%, (1,7') € 5.
4. g is a function such that:

(a) t;'ue iff for every v = 4’ € G%, (1,7') € s,
else

(b) false iff for some v =74’ € G%, v and 7' are
not congruent in s, else

(c) L.

5. For every v = v € B&, (7,7') € ¢ (if some v and
v’ are not congruent in s’, then the computation
containing the transition fails).

6. BY is the definition of a.

Commitment Commitment is to select a transition
to be taken; if there are more than one transition
that can be taken, one of them is committed non-
deterministically.

A.3 Flat TGHC

Flat timed guarded Horn clause A Flat TGHC
program is a set of flat timed guarded Horn clauses,
defined as follows:

H ~ GN i GT [a,ﬁ] l BN,BU

where H — Gy, Gr | By, By is the corresponding flat
uarded Horn clause, and [a, 3] is the time interval

%a,ﬁEN‘).

Flat TGHC program A Flat TGHC program CT
(i.e. a set of flat timed guarded Horn clauses) is as-

sociated with a timed transition system ¥Z,. =<
S,0,B,A,—,1l,u >, such that:

1. ¥gpe =< §,0,B,A,—,> is the underlying
transition system corresponding to C, such that
every flat guarded Horn clause in C is the corre-
spondence to the clauses in CT, and

2. For every flat timed guarded Horn clause H «
Gy : Gr [0,8] | By,By € CT and every tran-
sition 7 = (3,2 2. (s',b') represented by H —

Gn,Gr | By, By, the time interval is defined as
follows:
(a) (1) =«

(b) w(r) = 8.

If a transition cannot meet its time interval, the
computation fails.
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